

SYNACORP TECHNOLOGIES SDN. BHD. (1310487-K) No.25 Lorong 1/SS3, Bandar Tasek Mutiara, 14120 Simpang Ampat, Penang, Malaysia. T: +604.586.0026 F: +604.586.0026 WEBSITE: www.synacorp.my EMAIL: sales@synacorp.my

USING nRF24L01+ & nRF24L01+ PA LNA WIRELESS MODULE WITH BREAKOUT BOARD

Introduction

The nRF24L01+ module designed to operate in the 2.4 GHz worldwide ISM frequency band and uses GFSK modulation for data transmission. The data transfer rate is configurable and can be set to 250kbps, 1Mbps, or 2Mbps.

Specification

Frequency Range	2.4 GHz ISM Band	
Maximum Air Data Rate	2 Mb/s	
Modulation Format	GFSK	
Max. Output Power	0 dBm	
Operating Supply Voltage	1.9 V to 3.6 V	
Max. Operating Current	13.5mA	
Min. Current(Standby Mode)	26μΑ	
Logic Inputs	5V Tolerant	
Communication Range	800+ m (line of sight)	

SYNACORP TECHNOLOGIES SDN. BHD. (1310487-K) No.25 Lorong 1/SS3, Bandar Tasek Mutiara, 14120 Simpang Ampat, Penang, Malaysia, T: +604.586.0026 F: +604.586.0026 WEBSITE: www.synacorp.my EMAIL: sales@synacorp.my

Objective:

To establish connection and transmit data transfer between two nRF24L01 module.

Note:

Setting up nRF24L01 without breakout can be hit or miss due lack of power consistencies from Arduino. Breakout board will eliminate the voltage inconsistencies to nRF module. Adding external DC 5v power source to breakout board recommended.

Connection Diagram:

Attach Module on Breakout board as picture below.

Connection Table:

5V external DC power sources are optional, if used with external supply positive terminal goes to VIN.

Arduino UNO	nRF24L01 Breakout board	OPTIONAL: 5V DC Adapter
5V / <mark>VIN</mark>	VCC	Positive Terminal
GND	GND	Negative Terminal
D9	CE	-
D10	CSN	-
D13	SCK	-
D11	MOSI	-
D12	MISO	-
No Connection	IRQ	-

SYNACORP TECHNOLOGIES SDN. BHD. (1310487-K) No.25 Lorong 1/SS3, Bandar Tasek Mutiara, 14120 Simpang Ampat, Penang, Malaysia. T: +604.586.0026 F: +604.586.0026 WEBSITE: www.synacorp.my EMAIL: sales@synacorp.my

Installing Arduino Library:

In this guide, we will use <u>**RF24-1.1.7.zip</u>**. User can download it thru Arduino IDE Library Manager or from our share drive. **Latest version are not tested**. Restart Arduino IDE after perform Library installation.</u>

💿 Library Manager	Х		
Type All V Topic All V rf24			
	^		
RF24			
Radio driver, OSI layer 2 library for nrf24L01(+) modules. Core library for nRF24L01(+) communication. Simple to use for			
communication.			
- RF24Ethernet			
OSI layer 4/5 (TCP/IP) wireless/radio IoT mesh networks for nRF24L01(+) Automated, wireless(not WiFi), sensor/IoT			
gateway. An experiment disconnected			
RF24G			
A simple way for up to 6 nRE24101 radios to communicate with each other. Requires TMRh20's RE24 library.	~		
Close	:		

A. Checking Connection/Setup.

1. **Upload** the provided **Check Connection** code to check whether the module hooked properly. Make sure **Board type** and **COM port** are correct before upload. Upload it on both Arduino.

2. Open serial monitor and check the data. Make sure your baud rate are set to 115200 bps.

3. If you got mostly **0x00** or **0xff**, means there might be a **communication problem** between Arduino and nRF module. Check your connection and try again.

```
COM10
                                                                                                          Х
                                                                                                  Send
12:30:38.300 -> CheckConnection Starting
                                                                                                            ~
12:30:38.300 ->
12:30:38.300 -> FIRST WITH THE DEFAULT ADDRESSES after power on
12:30:38.300 -> Note that RF24 does NOT reset when Arduino resets - only when power is removed
12:30:38.300 -> If the numbers are mostly 0x00 or 0xff it means that the Arduino is not
12:30:38.300 -> Communicating with the nRF24
12:30:38.347 ->
12:30:38.347 -> STATUS
                                  = 0x0e RX_DR=0 TX_DS=0 MAX_RT=0 RX_P_NO=7 TX_FULL=0
12:30:38.347 -> RX_ADDR_P0-1 = 0xe7e7e7e7e7 0x4141417852
12:30:38.347 -> RX_ADDR_P2-5 = 0xc3 0xc4 0xc5 0xc6
12:30:38.347 -> TX_ADDR = 0xe7e7e7e7
12:30:38.347 -> RX_PW_P0-6 = 0x00 0x20 0x00 0x00 0x00 0x00
12:30:38.347 -> EN_RXADDR
12:30:38.347 -> EN AA
                                    = 0x3f
                                    = 0 \times 03
12:30:38.347 -> RF_CH
                                    = 0x4c
12:30:38.347 -> RF SETUP
                                   = 0 \times 07
12:30:38.347 -> CONFIG
                                   = 0x0e
12:30:38.347 -> DYNPD/FEATURE = 0x00 0x00
                                   = 1MBPS
12:30:38.347 -> Data Rate
12:30:38.347 -> Model
                                    = nRF24L01+
12:30:38.347 -> CRC Length
                                    = 16 bits
12:30:38.347 -> PA Power
                                    = PA MAX
12:30:38.347 ->
12:30:38.347 ->
12:30:38.347 -> AND NOW WITH ADDRESS AAAxR 0x41 41 41 78 52 ON P1
12:30:38.347 -> and 250KBPS data rate
12:30:38.347 ->
12:30:38.347 -> STATUS = 0x0e RX_DR=0 TX_DS=0 MAX_RT=0 RX_P_NO=7 TX_FULL=0

12:30:38.394 -> RX_ADDR_PO-1 = 0xe7e7e7e7e7 0x4141417852

12:30:38.394 -> RX_ADDR_P2-5 = 0xc3 0xc4 0xc5 0xc6

12:30:38.394 -> TX_ADDR_P2-5 = 0xc3 0xc4 0xc5 0xc6
12:30:38.394 -> TX_ADDR = 0xe7e7e7e7e7
12:30:38.394 -> RX_PW_P0-6 = 0x00 0x20 0x00 0x00 0x00 0x00 0x00 - 0x26
12:30:38.394 -> EN AA
                                   = 0x3f
12:30:38.394 -> EN RXADDR
                                   = 0 \times 03
12:30:38.394 -> RF CH
                                    = 0x4c
12:30:38.394 -> RF SETUP
                                    = 0x27
12:30:38.394 -> CONFIG
                                    = 0x0e
12:30:38.394 -> DYNPD/FEATURE = 0x00 0x00
12:30:38.394 -> Data Rate = 250KBPS
12:30:38.394 -> Model
                                    = nRF24L01+
12:30:38.394 -> CRC Length
                                   = 16 bits
12:30:38.394 -> PA Power
                                   = PA MAX
12:30:38.394 ->
12:30:38.394 ->
                                                             No line ending \,\,\,\lor\,\,\,\, 115200 baud \,\,\,\,\lor\,\,\,
Autoscroll Show timestamp
                                                                                                 Clear output
```


SYNACORP TECHNOLOGIES SDN. BHD. (1310487-K) No.25 Lorong 1/SS3, Bandar Tasek Mutiara, 14120 Simpang Ampat, Penang, Malaysia, T: +604.586.0026 F: +604.586.0026 WEBSITE: www.synacorp.my EMAIL: sales@synacorp.my

B. Transmitting and Receiving Data.

1. Upload **Simple_TX** and **Simple_RX** code to each respective Arduino. Make sure **Board type** and **COM port** are correct before upload.

UNO A & nRF Module for Transmit data

UNO B & nRF Module for Receive data

2. Open both **serial monitor**, our Transmitter nRF will send text 'Message (X)', where 'X' are number counting from 0 to 9. On Receiver nRF side, it will display text that received.

© COM10	- 🗆 X	© COM5 — □	\times
	Send		Send
12:49:15.988 -> SimpleTx Starting	^	12:49:15.864 -> SimpleRx Starting	^
12:49:18.006 -> Data Sent - Message 0 - Acknowledge received		12:49:18.023 -> Data received - Message 0 - Acknowledge Sent	
12:49:20.025 -> Data Sent - Message 1 - Acknowledge received		12:49:19.995 -> Data received - Message 1 - Acknowledge Sent	
12:49:21.996 -> Data Sent - Message 2 - Acknowledge received		12:49:22.011 -> Data received - Message 2 - Acknowledge Sent	
12:49:24.016 -> Data Sent - Message 3 - Acknowledge received		12:49:24.032 -> Data received - Message 3 - Acknowledge Sent	
12:49:26.009 -> Data Sent - Message 4 - Acknowledge received		12:49:26.040 -> Data received - Message 4 - Acknowledge Sent	
12:49:28.027 -> Data Sent - Message 5 - Acknowledge received		12:49:28.011 -> Data received - Message 5 - Acknowledge Sent	
12:49:30.047 -> Data Sent - Message 6 - Acknowledge received		12:49:30.033 -> Data received - Message 6 - Acknowledge Sent	
12:49:32.019 -> Data Sent - Message 7 - Acknowledge received		12:49:32.050 -> Data received - Message 7 - Acknowledge Sent	
12:49:34.039 -> Data Sent - Message 8 - Acknowledge received		12:49:34.024 -> Data received - Message 8 - Acknowledge Sent	
12:49:36.066 -> Data Sent - Message 9 - Acknowledge received		12:49:36.050 -> Data received - Message 9 - Acknowledge Sent	
12:49:38.042 -> Data Sent - Message 0 - Acknowledge received		12:49:38.073 -> Data received - Message 0 - Acknowledge Sent	
12:49:40.066 -> Data Sent - Message 1 - Acknowledge received		12:49:40.050 -> Data received - Message 1 - Acknowledge Sent	
12:49:42.047 -> Data Sent - Message 2 - Acknowledge received	~	12:49:42.078 -> Data received - Message 2 - Acknowledge Sent	×
Autoscroll 🖉 Show timestamp Both NL & CR 🗸 115200 bau	i 🗸 Clear output	Autoscroll 🗹 Show timestamp Both NL & CR 🗸 115200 baud 🗸 Clear	output

nRF24L01+ Automatic Packet Handling Explanation.

- 1. Transmitter send data to Receiver.
- 2. Once data received thru Receiver it will wait for 130 μ s.
- 3. Receiver will sent Acknowledgement to Transmitter.
- 4. Transmitter Receive Acknowledgement.
- 5. Data transmission successful.

Transmitter	→	Receiver
Transmitter	├ ──►	Receiver
Transmitter	┃	Receiver
Transmitter		Receiver