

ARDUINO ROBOTIC ARM 4 DOF

Introduction

The MeArm project aims to bring a simple Robot Arm well within the reach and budget of the average educator, student, parent or child. The design brief that has been set out with was to build a full robot arm kit with standard low cost screws, low cost servomotors and using less than 300 x 200mm (~A4) of acrylic. While trying to solve the robotic problem, user also can get to learn about science, technology, engineering, arts and mathematics or STEM.

The more people who are involved with these STEM activities the more chance they have of solving all of life's problems. The MeArm is an Open Sourced Robot Arm. It's small, like pocket sized and that's for a reason. It can be cut entirely from an A4 (or more accurately 300x200mm) sheet of acrylic and built with 4pcs cheap hobby servos. It supposed to be an educational aid, or more accurately a toy. It still needs some tinkering but is at a good first draft state.

- 1set

- 1set

- 2pcs

- 1pcs

- 1m

Component List

- 1. Servo Motor SG90S (Blue) 3set
- 2. Servo Motor MG90S (Black)
- 3. Robotic Arm Acrylic Kit
- 4. Arduino UNO R3 (CH340) + Cable 1pcs
- 5. Arduino Sensor Shield V5 1pcs
- 6. Joystick Module
- 7. Jumper Wire Female to Female 10pcs
- 8. Power Adapter DC 5v 2A
- 9. DC Jack (Female) Plug Converter 1pcs
- 10. Single Core Cable

Installation Manual

Reference: <u>Assembly of MeArm Mechanical Arm (gitnova.com)</u>

Installing Servo

A. Base Servo (Black Servo MG90S)

- Make sure to set the servo angle to **90°** before installing the servo.
- Align the servo arm as picture below.

B. Gripper Servo (Blue Servo SG90S)

- Make sure to set the servo angle to **35°** before installing the servo.
- Make sure the gripper is open state as picture below.

C. Shoulder Servo (Blue Servo SG90S)

- Make sure to set the servo angle to **90°** before installing the servo.
- Align the servo arm as picture below.

D. Elbow Servo (Blue Servo SG90S)

- Make sure to set the servo angle to **90°** before installing the servo.
- Align the servo arm as picture below.

Sample Servo Degree Code

- Upload the code & open serial monitor to control Servo.

Servo_Degree_Input Arduino 1.8.19	
File Edit Sketch Tools Help	Janoadde (Bortonia
	💿 COM15
Servo_Degree_Input	
1 #include <servo.h></servo.h>	
2	15:31:21.638 -> Please input Degree angle
3 Servo myservo; // Create servo object to control a servo	15:31:25.317 -> Moving serve to
4	
5 // UNCOMMENT ONLY ONE SERVO AT A TIME !!!	15:31:25.317 -> 0
6	15:31:30.203 -> Moving servo to
7 //int servoPin = 11; // set the control pin of servo 1 to D11 (BASE)	15-31-30 203 -> 90
8 int servopin = 9; // set the control pin of servo 2 to D9 (ELBOW))	10.01.00.200 / 50
9 //int servorin = 10; // set the control pin of servo 3 to Dio (SHOULD	
10 //int servoPin = 6; // set the control pin of servo 4 to D6 (CLAW)	
12 Serial begin (9600): // Start serial communication	
15 Serial.begin(9600); // Start Serial Communication	
<pre>15 Serial print ("Diages input Degree angle ").</pre>	1
is seriar.print(ricase input begice digite);	

Circuit Diagram

Arduino Sensor Shield	Servo MG90S	
V5	(Base) *Black Color*	
Data 11 (D11)	Signal (S)	Δ
VCC	VCC	
GND	GND	
Arduino Sensor Shield	Servo SG90S	
V5	(Gripper)	
Data 6 (D6)	Signal (S)	
VCC	VCC	A
GND	GND	
Arduino Sensor Shield	Servo SG90S	
V5	(Shoulder/Left)	
Data 10 (D10)	Signal (S)	
VCC	VCC	
GND	GND	A
Arduino Sensor Shield	Servo SG90S	
V5	(Elbow/Right)	
Data 9 (D9)	Signal (S)	
VCC	VCC	
GND	GND	

Arduino Sensor Shield V5	Joystick Module Left
Analog 0 (A0)	VRX
Analog 1 (A1)	VRY
VCC	VCC
GND	GND
Arduino Sensor Shield	Joystick Module
V5	Right
Analog 2 (A2)	VRX
Analog 3 (A3)	VRY
VCC	VCC
GND	GND
Arduino Sensor Shield V5	DC Power Jack
VCC	Positive Terminal (+)
	Negative Terreinal ()

Sample Code

(https://drive.google.com/drive/folders/1Z7JmC-jB0DClawvgztPx6U4AWh0Y7-Xd?usp=sharing)

··· > V3 - Updated > Code - ዳ				
Type • People • Modified •				
Name V				
Servo_Degree_Input				
4DOF_Arm_Robot				

4DOF_Arm_Robot

Upload the provided code & control using the Left & Right Joystick

Control / Movement Set

Color	Servo	Action
L	Gripper	Close
L	Gripper	Open
L	Elbow/Right	Move Backward
L	Elbow/Right	Move Forward
R	Base	Turn Base to Right
R	Base	Turn Base to Left
R	Shoulder/Left	Move Upward
R	Shoulder/Left	Move Downward