

No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my (Email) sales@synacorp.com.my

ACS712 Current Sensor Module

Introduction

Sensing and controlling current flow is a fundamental requirement in a wide variety of applications including, over-current protection circuits, battery chargers, switching mode power supplies, digital watt meters, programmable current sources, etc. One of the simplest techniques of sensing current is to place a small value resistance (also known as Shunt resistor) in between the load and the ground and measure the voltage drop across it, which in fact, is proportional to the current flowing through it.

Whereas this technique is easy and straightforward to implement, it may not be very precise because the value of the shunt resistor slightly varies with its temperature, which in fact is not constant because of the Joule heating. Besides, this simple technique does not provide an isolation between the load and current sensing unit, which is desirable in applications involving high voltage loads.

	5A Module	20A Module	30A Module
Supply Voltage (VCC)	5Vdc Nominal	5Vdc Nominal	5Vdc Nominal
Measurement Range	-5 to +5 Amps	-20 to +20 Amps	-30 to +30 Amps
Voltage at 0A	VCC/2 (nominally 2.5Vdc)	VCC/2 (nominally 2.5Vdc)	VCC/2 (nominally 2.5VDC)
Scale Factor	185 mV per Amp	100 mV per Amp	66 mV per Amp
Chip	ACS712ELC- 05A	ACS712ELC- 10A	ACS712ELC-30A

Specification

No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my (Email) sales@synacorp.com.my

Images

Packing List

• Arduino Current Sensor Module ACS712 (30A)

Requirements

It can be interface with any microcontroller such as <u>PIC</u>, <u>SK40C</u>, <u>SK28A</u>, <u>SKds40A</u>, <u>Arduino series</u>.

Necessary hardware to follow this guide:

- Arduino Uno
- Arduino Current Sensor Module ACS712 (30A)
- Male-Female/Female-Female jumper wire
- Resistor (2200hm)
- Battery 9V

vr Strategic Solution Provider No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my (Email) sales@synacorp.com.my

Pin Assignment

Pin-out Diagram							
IP+ 1 IP+ 2 IP- 3 IP- 4 IP- 4 IP- 4 IP- 4 IP- 4 IP- 4 IP- 4 IP- 4 IP- 4 IP- 5 GND							
Number	Name	Description					
1 and 2	Name IP+	Description Terminals for current being sampled; fused internally					
1 and 2 3 and 4	Name IP+ IP-	Description Terminals for current being sampled; fused internally Terminals for current being sampled; fused internally					
Number 1 and 2 3 and 4 5	Name IP+ IP- GND	Description Terminals for current being sampled; fused internally Terminals for current being sampled; fused internally Signal ground terminal					
Number 1 and 2 3 and 4 5 6	Name IP+ IP- GND FILTER	Description Terminals for current being sampled; fused internally Terminals for current being sampled; fused internally Signal ground terminal Terminal for external capacitor that sets bandwidth					
Number 1 and 2 3 and 4 5 6 7	Name IP+ IP- GND FILTER VIOUT	Description Terminals for current being sampled; fused internally Terminals for current being sampled; fused internally Signal ground terminal Terminal for external capacitor that sets bandwidth Analog output signal					

SYNACORP TRADING & SERVICES No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my

(Email) sales@synacorp.com.my

Hardware Interface/Setup

As mentioned, these modules are primarily designed for use with micro-controllers like the Arduino. In those applications, the connections would be as picture below:

If the light bulb shown in the picture above were disconnected, the output of the ACS712 module would be 2.500 volts. Once connected, the output would be scaled to the current drawn through the bulb. If this were a 5 Amp module and the light bulb pulled 1 Amp, the output of the module would be 2.685 volts.

Now imagine the battery polarity reversed. Using the same 5A module, the output would be 2.315 volts. IMPORTANT NOTE – This device is a Hall Effect transducer. It should not be used near significant magnetic fields

No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my (Email) sales@synacorp.com.my

Example Code

This is example code for moisture sensor module. The full code can be download at <u>https://www.elecrow.com/wiki/index.php?title=ACS712_Current_Sensor-_5A</u>

```
/*
Measuring Current Using ACS712
*/
const int analogIn = A0;
int mVperAmp = 185; // use 100 for 20A Module and 66 for 30A Module
int RawValue= 0;
int ACSoffset = 2500;
double Voltage = 0;
double Amps = 0;
void setup(){
 Serial.begin(9600);
}
void loop(){
RawValue = analogRead(analogIn);
Voltage = (RawValue / 1024.0) * 5000; // Gets you mV
Amps = ((Voltage - ACSoffset) / mVperAmp);
Serial.print("Raw Value = "); // shows pre-scaled value
Serial.print(RawValue); Serial.print("\t mV = "); // shows the voltage measured
Serial.print(Voltage,3);
// the '3' after voltage allows you to display 3 digits after decimal point
Serial.print("\t Amps = "); // shows the voltage measured
Serial.println(Amps,3);
// the '3' after voltage allows you to display 3 digits after decimal point
delay(2500);
}
```


No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my (Email) sales@synacorp.com.my

CONNECTION

No.9, 1st Floor, Lorong 1/SS2, Bandar Tasek Mutiara, 14120 Simpang Ampat, S.Prai (S), Penang Tel : +604.502.1726 Hunting Line : 012.403.3474 Fax : +604.502.1726 (Website) http://www.synacorp.my (Email) sales@synacorp.com.my

RESULTS

sketch_feb09a			
/*	a	COMB	(Arduino/Genuino Uno)
Measuring Current Using ACS712	<u> </u>	CONIS	(Ardunio/Genunio Ono)
*/			
const int analogIn = A0;	<u></u>		
int mVperAmp = 185; // use 100 for 20A Module and 66 for 30A Module	Raw Value = 510	mV =	Amps = -0.053
<pre>int RawValue= 0;</pre>	Raw Value = 509	mV =	Amps = -0.079
<pre>int ACSoffset = 2500;</pre>	Raw Value = 510	mV =	Amps = -0.053
double Voltage = 0;	Raw Value = 510	mV =	Amps = -0.053
double Amps = 0;	Raw Value = 511	mV =	Amps = -0.026
	Raw Value = 509	mV =	Amps = -0.079
<pre>void setup() {</pre>	Raw Value = 511	mV =	Amps = -0.026
Serial.begin(9600);	Raw Value = 511	mV =	Amps = -0.026
}	Raw Value = 511	mV =	Amps = -0.026
<pre>void loop() {</pre>	Raw Value = 510	mV =	Amps = -0.053
	Raw Value = 510	mV =	Amps = -0.053
RawValue = analogRead(analogIn);	Raw Value = 511	mV =	Amps = -0.026
Voltage = (RawValue / 1024.0) * 5000; // Gets you mV	Raw Value = 511	mV =	Amps = -0.026
Amps = ((Voltage - ACSoffset) / mVperAmp);	Raw Value = 510	mV =	Amps = -0.053
	Raw Value = 510	mV =	Amps = -0.053
Serial.print("Raw Value = "); // shows pre-scaled value	Raw Value = 510	mV =	Amps = -0.053
Serial.print(RawValue); Serial.print("\t mV = "); // shows the voltage meas	Raw Value = 510	mV =	Amps = -0.053
// the '3' after voltage allows you to display 3 digits after decimal point	Raw Value = 509	mV =	Amps = -0.079
<pre>Serial.print("\t Amps = "); // shows the voltage measured</pre>	Raw Value = 510	mV =	Amps = -0.053
<pre>Serial.println(Amps, 3);</pre>	Dev. 11-1 F10		3
// the '3' after voltage allows you to display 3 digits after decimal point	 Autoscroll 		Carriage return
delay(2500);			
}			

Applications

- 1. Motor control
- 2. Load detection and management
- 3. Switched-mode power supplies
- 4. Overcurrent fault protection.